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SIMULATION OF 2D EXTERNAL VISCOUS FLOWS BY MEANS 
OF A DOMAIN DECOMPOSITION METHOD USING AN 

INFLUENCE MATRIX TECHNIQUE 
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SUMMARY 
Two-dimensional external viscous flows are numerically approximated by means of a domain decomposition 
method which combines a vortex method and a finite difference method. The vortex method is used in the flow 
region which is dominated by convective effects, whereas the finite difference method is used in the flow region 
where viscous diffusion effects are dominant. An influence matrix technique combined with the uniformity 
condition of the pressure is used to enforce the tangential velocity boundary condition. Comparisons between 
numerical and experimental data show that the method is well adapted for simulating two-dimensional flows. 
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1. INTRODUCTION 

The domain decomposition method is very commonly used in the spectral,' finite elemen? and 
spectral-finite element3 methods. In the vortex method, Cottet4 uses a domain decomposition method 
with overlapping coupled with the finite difference method. In References 5-7 we use a domain 
decomposition method of Schur complement coupled also with the finite difference method. In the 
finite difference method with the formulation ($, o) we often use a Dirichlet boundary condition for 
the vorticity in which the tangential velocity boundary condition is imposed. Numerically this 
discretization gives a satisfactory result, but mathematically it is insufficient because the converse is 
not true, i.e. the tangential velocity calculated with this Dirichlet boundary condition is no longer zero. 

To overcome the difficulty involved in this coupling at the boundary, an influence matrix technique 
is presented. The influence matrix technique, also known as the capacitance matrix technique, has been 
widely used to solve systems of elliptic linear equations in situations with irregular 
unavailable boundary conditions12 or coupled boundary conditions for components of ~ariab1es.I~ In 
all cases the technique makes use of the principle of superposition of solutions to elementary problems. 
A linear combination of these elementary solutions is then sought in order to ensure an additional 
condition. 

Kleiser and Sch~mann '~  were apparently the first to use the influence matrix technique for the 
incompressible Navier-Stokes equations in primitive variables in 3D. Later this technique was 
extended by Le Qukrk and Alziary de Roquefort'2315 to 2D problems. 
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For the Navier-Stokes equations in non-primitive variables the influence matrix technique was also 
used to overcome the boundary condition for o. When solving the 2D Navier-Stokes equations 
formulated in terms of the velocity function ii and vorticity function o, the influence matrix expresses a 
linear relationship between the distribution of vorticity and the divergence of velocity along the 
boundary.I6 In terms of the streamfunction @ and vorticity o,17-19 the influence matrix gives a linear 
relationship between the vorticity and the tangential velocity at the boundary. 

It is noted that the streamfunction at the boundary was assumed known. However, in the case of 
external flow this function must be determined. 

In this paper an influence matrix method coupled with the uniformity condition of the pressure is 
proposed to solve 2D external incompressible viscous flows. This finite difference method is coupled 
with a vortex method. Numerical evidence of the efficiency of the present method is supported by the 
simulation of the flow around an aerofoil with incidences of 34" and 20" at Reynolds numbers of 1000 
and 10,000. 

2. DOMAIN DECOMPOSITION METHOD 

We use a domain decomposition method'.* here to simulate the external viscous flows around an 
obstacle. The fluid domain 9 is decomposed into two open subdomains so that 9 = 90 U s, where 
9, is homeomorphic with a disc. Thus the convective effects are dominant in go and a particle method 
is used. In the subdomain g1, the viscous effects are dominant and a finite difference method is used. 
Let B1 (resp. r,) be the interface between g1 and the obstacle (resp. go) and let ni be the outward 
normal to the boundary of Qi for i = O ,  1 (see Figure 1). 

In go the Navier-Stokes equations are formulated in terms of the velocity and vorticity (iio, o) as 

+ 

(4) iio -+ U,i at infinity, 

in which all quantities have been normalized by the half-chord of the profile a and the velocity U,. 
The Reynolds number is defined by Re = Um2a/v. 

Figure 1. Definition of computational domain and subdomains 
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In QI they are formulated in terms of the vorticity and streamfunction as 

a0 2 
- at + v - [W. x (*k')] = $ 7 2 w ,  ( 5 )  

v2* = -w. (6) 

At the wall the boundary conditions for the vorticity and the constant value of the streamfunction are 
calculated by an influence matrix technique and the uniformity condition of the pressure, 

(aw/aZl)  = 0. The condition at infinity is treated naturally by the particle method (Biot-Savart law). 
Let T, > 0 and N be a positive integer; the Navier-Stokes problem is to be solved in the time interval 

[0, T,]. Let 6t = T, 1N and tk=k6t with 0 5 k 5 N. Assume that the solutions are known in time 
intervals ( t i - l ,  ti) so that 1 5 1 5 k < N. We will solve the system in time intervals (tk,  t k + l ) .  

2. I .  Particle method in 9 0  

The fluid motion is studied in the reference frame of the obstacle. In go the advection-difision 
equation of wo is approximated by 

in which the velocity field is given by the Green identity 

iii(2) = u,i+ wkVG@ - 2) x k'dv, 
9 0 U 9 l  

where G@ - 2) = (1/271) logw - 21 is the Green function of the Laplace operator in R2. 
The problem is completely defined with some transmission conditions. For high Reynolds numbers 

equation (7) can be locally considered as a hyperbolic equation whose right-hand side, 
(2/Re)V2wk", is a perturbation. For this kind of problem Dirichlet conditions are imposed on the 
subset of r, where the flow enters go. In this framework the transmission conditions that are needed 
can be expressed as 

The problem presented above is approximated by means of a particle method that can take account 
of Dirichlet data. All details may be found in Reference 5. 

2.2. Finite diference method in 9 1  

In subdomain 9 the Navier-Stokes equations are derived using the streamhnction-vorticity 
formulation. As usual with the influence matrix technique, we use a semi-implicit Adams-Basforth- 
Crank-Nicolson (ABCN) scheme to advance in time. This consists of writing the transport equation 
(5) at the time level (k+$)6t and evaluating the difision term implicitly and convective terms 
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explicitly at this time level by means of the Adams-Bashforth extrapolation. Thus a Helmholtz 
equation has to be solved together with the Poisson equation and the no-slip condition. Then the 
system of Navier-Stokes equations becomes 

(01 - vZ)wf+'  = Sk, (10) 

a*k + A = O  onB1, 
diil 

* k + l  = const. onBI, 

(y2g = 0 on BI,  

in which 

2Re a=- 
st ? 

Sk = (aZ + V2)wf - Re[3V - (wfV x $fZ) - V - (wf - 'V  x ~,b;-lZ)]. (16) 

For the vorticity boundary conditions on B 1  we use an influence matrix technique in which the 
condition (12) has been considered. The uniformity condition of the pressure (14) is used to determine 
the streamfunction boundary value. (See Sections 3 and 4.) 

The problem is well posed with the transmission conditions on rl. For the streamfunction I,$ we 
need the transmission conditions on the whole interface, because @ is the solution of the elliptic 
equations (6) or (1 1). The condition of $f + is calculated by the formula 

wkG(2 - 2')dx' - 
OOU% 

*; + (2) = Umy + 
For the vorticity on rl the equation is considered as an elliptic equation by the finite difference 

method. However, the nature of the fluid flow is hyperbolic (i.e. the convective effects are dominant on 
the interface). Thus one calculates the vorticity conditions upon the velocity on the interface. These 
transmission conditions are given as 

3. THE FIRST INFLUENCE MATRIX TECHNIQUE 

3.1. The superposition principle 

As known, the influence matrix method is based on the superposition principle for linear problems. 
Now we split the linear problem of Section 2.2 into several linear problems that can be solved easily. 
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Let OB, be a given function on B1 and consider the linear problem 

(az - V2)6 = s, 

6 = C O B ,  onB1, (21) 

(22) 
2 -  V * = - 6 ,  

$ = $ E l  onB1i (23) 
in which one assumes ~,b~, a fbnction well known. This problem has a unique solution (6, $) for an 
arbitrary function OB, . If we consider the difference between this solution (6, $) and the solution of 
the problem in Section 2.2 (wl, then we have the homogeneous linear system 

(az - V2)(6 - Ol) = 0, (24) 

$-$,  = O  onB1. (27) 
Let us assume that a grid in the domain near the wall is generated and N denotes the number of 

points lying along the boundary. Then the solution of the linear system above becomes a linear 
combination of the N elementary solutions defined by 

(oz - V2)ok = 0, (28) 

wk (B’) = 6kj VBJ E B1, (29) 

$ k = O  onB1, (31) 

where 6 ,  is the Kronecker symbol. Each of these linear problems has a unique solution which is 
independent of time and can be solved once only at an early stage. 

Thus the solution of the Navier-Stokes equations in 9, takes the form 

N 

k = l  

According to the definition a e fbnction wk, the coefficients (A&= I ,  1 1  l4..., 1 4 ~  are related to the 
vorticity 01 on the boundary B1 by 

Ol(Bk) = 6(&) +& V& E B1. (34) 

The remaining work is to determine these coefficients in order to satisfy the tangential velocity 
boundary condition and the uniformity condition of the pressure. 
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3.2. Construction of the influence matrix 

The coefficients & are computed in order to ensure the tangential velocity boundary condition 
which is not yet taken into account. We obtain the tangential velocity relation at the boundary by 
differentiating relation (33) with respect to nl  to give 

This equation can be written in matrix form as 

The elements aii of the matrix A of order N are defined by 

AA = f. 

av 
- aii, 

a -  - -(Bi), i, j = 1, . . . , N, (37) 

and the elements f; of the vector f are defined by 

The matrix A is diagonally dominant because it is calculated with the elementary solutions. Then the 
inverse of matrix A is obtained using a GMRES (generalized minimal residual algorithm) iteration 

If we choose the function OB, as being equal to the value of the previous step, the GMRES 
iteration method converges in five iterations for a residual reduction of lop4. 

3.3. Uniformity condition of the pressure at the wall 

In the problem of Section 2.2 the streamfunction at the wall, which is constant, remains unknown. In 
order to determine this constant, we have the uniformity condition of the pressure (14) which is not yet 
taken into account. Thus we take this condition into the following discrete form using the Taylor 
development of series of fourth order: 

5 [16*1(2, j )  - *I(% j )  - 6dx2O1(1, A1 
(39) I B I  = J =  I 

15N 
It is noticed that if the value of the streamfunction at the boundary changes, the old value of COB] 

calculated by the influence matrix method no longer satisfies the tangential velocity boundary 
condition. Hence in order to satisfy these two conditions, an iteration technique is required to obtain 

We remark that this iteration method converges very slowly. To overcome this difficulty, we use a 
($El 9 O B I ) .  

relaxation method to calculate the streamfunction boundary value as 

$El  = a*old -k ( l  - a)$~ew. (40) 
In practice we choose c1< 0 in order to accelerate the convergence. 

4. THE SECOND INFLUENCE MATRIX TECHNIQUE 

In this section we add the uniformity condition of the pressure into the influence matrix. This means 
that we split the linear problem of Section 2.2 as in Section 3 and treat the streamfunction at the 
boundary in the influence matrix as unknown. 
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Let ( W E , ,  I),,) be a given fimction on B1 and consider first the problem 

(oz - v2)o = s, (41) 

(43 ) V I ) = - 6 ,  2 -  

6 = I),, onB1. (44) 
This problem has a unique solution (6, 4) for the arbitrary function ( W E , ,  I),,). We now compare 

this solution with the solution of the problem in Section 2.2. We obtain a homogeneous linear system 
for the difference between these two solutions. Then we can build N + 1 elementary solutions defined 
as 

(61 - V*)Wk = 0, (45) 

wk(BJ) = 8kj VBJ E BI, (46) 

I ) ~  = o onB1 (48) 

and 

(01 - V2)WN+ I = 0, (49) 

w ~ + ~ ( B J )  = o VBJ E B ~ ,  (50) 

Each of these N + 1 linear problems has a unique solution which is also independent of time and can 

Thus the solution of the Navier-Stokes equations in gl becomes 
be solved once only at an early stage. 

We now build the influence matrix using the tangential velocity boundary condition and the 
uniformity condition of the pressure: 
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Then we have an ( N +  1) X ( N +  1) matrix system that can determine the ( N +  1) unknowns (Ak, c). 
This matrix is not diagonally dominant, because $ (awN+'/dn'l) = 0. Then we use a Gauss direct 

We remark that we obtain the boundary values of ( U S , ,  ~j~, )  by solving the influence matrix once 
method to calculate the inverse of the matrix. 

only. With this scheme we can reduce the computer time cost. 

5, NUMERICAL IMPLEMENTATION OF THE FINITE DIFFERENCE METHOD 

The system of equations is discretized in space with a second-order centred difference scheme. Then 
we obtain a matrix of the system which is diagonally dominant and can be solved easily by the 
GMRES iterative method or an alternating direction implicit (ADI) method. 

For the determination of the velocity at the boundary there exist several approximation formulae. We 
discuss two types of discretization. A first discretization is defined by using the streamfunction only as 

(57) 
18$(2, j )  - 9$(3, j )  + 2$(4, j )  - 11$(1, i) 

66x -(I, j )  = ax 
This discretization is of order three. At low Reynolds numbers this scheme gives a satisfactory 

result. At high Reynolds numbers the scheme needs a very fine grid because the vorticity diffusion is 
very small, while the vorticity convection term becomes important. A strong coupling of vorticity and 
velocity is essential. For this reason we introduce another type of discretization that is linked to the 
vorticity: 

(58) 
a* -(I, j )  = ax 

8$(2, j )  - 7$(1, i) - $(3, j )  - 6xF(1, i )w( l ,  i) 
66x 3 

This discretization is also of order three and gives a very satisfactory result for all Reynolds 

In the second influence matrix technique dw/dx is also discretized with the third-order-accurate 
numbers. 

relation 

(59) 
am 180(2, j )  - 90(3, j )  + 20(4, j )  - 1 l o (  1, j )  

66x - ( I ,  j )  = ax 

6. NUMERICAL RESULTS 

The purpose of this section is to illustrate the present method in the case of unsteady flow around the 
NACA 0012 aerofoil at Reynolds number of lo3 and lo4. The domain outside the aerofoil is mapped 
by a conformal mapping onto the exterior of a circle, which in turn is mapped by an exponential 
mapping onto a semi-infinite strip [0, 001 X [0, 21. This semi-infinite strip is decomposed into two 
subdomains: the 'finite difference' subdomain and the 'particle' subdomain. In the plane of the circle 
the 'finite difference' subdomain is limited to a ring of adimensional radius 3.6 (Figure 1). 

6.1. Re=lOOO 

For this Reynolds number the calculations have made with an incidence of 34". This choice is 
guided by the existence of numerous numerical results and experimental visualizations in the literature, 
necessary for our comparisons. The two influence matrix techniques described above have been 
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employed. They give similar results. However, the second technique is more efficient. The "finite 
difference' subdomain has been discretized by several grid systems (51 X 81, 51 X 121, 51 X 161). 
Numerical results reported in this paper correspond to a grid of 5 1 X 161 nodes. The time step is taken 
equal to 0.002. Figures 2-1 1 show comparisons of the flow structure between the present results and 
those reported in Reference 21. The comparisons show good agreement. The time evolution of the flow 
structure is correctly reproduced. All main and secondary vortices detected by experimental 
visualization are captured by numerical simulation. To illustrate the vorticity field, an example of a 
result obtained at t = 12 is given in Plate 1. 

Figure 2. Comparison of flow structure between experimental visualization2' and numerical results, Re= lo3, t = 0 4  
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Figure 3. Comparison of flow structure between experimental visualization2’ and numerical results, Re= lo3, t = 3 . 2  
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Figure 4. Comparison of flow structure between experimental visualization” and numerical results, Re= lo3, ?=5.6 



1122 W.-Z. SHEN AND TA PHUOC LOC 

..--- 

Figure 5. Comparison of flow structure between experimental visualization” and numerical results, Re= lo’, r=6.4 
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. 

Figure 6. Comparison of flow structure between experimental visualization” and numerical results, Re= lo3, t =  7.2 
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Figure 7. Comparison of flow structure between experimental visualization2' and numerical results, Re = 1 03, t = 8.0 



Plate 1. Vorticity field and streamlines, Re = 103, a = 34", t = 12 
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Figure 8. Comparison of flow structure between experimental visualization2' and numerical results, Re= lo', f = 8 . 8  
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Figure 9. Comparison of flow structure between experimental visualization2’ and numerical results, Re= lo3, t=9.6 
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Figure 10. Comparison of flow structure between experimental visualization*' and numerical results, Re= lo3, t=  10.4 
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Figure 11. Comparison of flow structure between experimental visualization2' and numerical results, Re= lo3, t = 1 1.2 
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6.2. Re = 10,000 

The influence matrix techniques are often used for low Reynolds numbers. For high Reynolds 
numbers, owing to the linearization of the convection term, the stability of the numerical method 
requires the use of a more restrictive time step. In order to analyse the behaviour of the present method 
at high Reynolds numbers, the flow around the NACA 0012 aerofoil at a Reynolds number equal to 
lo4 has been considered. The 'finite difference' subdomain is discretized with 81 X 161 nodes. Here 
the time step is chosen equal to 0.0005 to avoid instability. At this Reynolds number the experimental 
flow visualization points out the appearance of many microvortices along the surface of the aerofoil. 
The flow is less smooth, particularly in the separated zone. With a refined grid system these vortices 
are correctly reproduced in our numerical simulation. The repartition of the vorticity on the surface of 
the aerofoil, shown in Figures 12 and 13, confirms the presence of these microstructures. Despite the 
presence of 3D effects in the experimental visualization, the comparisons of the evolution of the flow 
with time between numerical results and experimental photographs from Laboratoire de Mtcanique 
des Fluides de Poitiers (Pineau and Coutanceau, unpublished) are found to be fairly satisfactory, as 
shown in Figures 14-18. 

600 

4 0 0  

200 

0 

- 2 0 0  

0 50 100 150 200 250 300 350 

Figure 12. Repartition of vorticity on surface of aerofoil, Re= lo4, a= 20" 
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Figure 13. Repartition of vorticity on surface of aerofoil, Re= lo4, a = 20" 

Figure 14. Comparison of flow structure between experimental visualization and numerical results, Re= lo4, t =  5 
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Figure 16. Comparison of flow structure between experimental visualization and numerical results, Re= lo4, t = 7  
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Figure 17. Comparison of flow structure behveen experimental visualization and numerical results, Re = lo4, t = 8 
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Figure 18. Comparison of flow structure between experimental visualization and numerical results, Re= 1 04, t = 9 
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7. CONCLUSIONS 

In this paper we have presented a domain decomposition method using an influence matrix technique 
for the finite difference method to simulate external incompressible viscous flows. An original aspect 
of the present work lies in the coupling of the influence matrix technique and the uniformity condition 
of the pressure. Another contribution is that the coupling method is developed to treat high-Reynolds- 
number flows. 

In order to increase the efficiency of the method, some technique improvements must be 
implemented. For example, the inner iteration of the finite difference method used to find the boundary 
value of + can be exploited using a variable relaxation parameter. In the vortex method the fast 
algorithm of Reference 22 can be used. The present approach can also be extended to multiple- 
moving-obstacle problems with or without heat transfer. 
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